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DIRECT SHOCKS IN A VIBRATIONALLY NONEQUILIBRIUM GAS

UDC 533.6 (075 8)Yu. N. Voroshilova and M. A. Rydalevskaya

Direct shocks in flows of a high-temperature diatomic gas with rotational and vibrational degrees
of freedom are considered. Gas-dynamic parameters and populations of molecular vibrational levels
behind a shock are studied for the case of disturbance of vibrational equilibrium in an incident flow.
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An increase in temperature leads to excitation of rotational and then vibrational degrees of freedom of gas
molecules. The associated physical processes can have a significant effect on the gas flow pattern.

It is known that changes in the translational and rotational energies of molecules due to collisions occur
much more frequently than changes in their vibrational energy [1, 2]. Under these conditions, the relaxation time
of vibrational degrees of freedom exceeds the relaxation time of translational and rotational degree of freedom.
In some cases, the vibrational relaxation time can be comparable or even exceed the characteristic gas-dynamic
time. In this connection, zones of vibrational nonequilibrium can form in gas flows. For example, experimental and
numerical studies have shown that in supersonic gas flows in divergent nozzles, the distribution of molecules over
vibrational levels can differ significantly from the Boltzmann distribution [2–4]. Vibrational nonequilibrium of gas
was also observed at altitudes of about 60–70 km during spacecraft entry into the Earth’s atmosphere. Therefore,
in recent decades, there has been considerable interest of researches in vibrationally nonequilibrium flows. The
greatest attention has been paid to the so-called quasistationary modes of vibrational relaxation, in which nonequi-
librium quasistationary distributions of molecules over vibrational levels are formed in each physically infinitesimal
gas volume against the background of an equilibrium Maxwell–Boltzmann distribution over the translational and
rotational energies.

The vibrational energy of a high-temperature gas is commonly described using the model of an anharmonic
oscillator. In this case, the vibrational energy of a molecule reckoned from the zero level has the form

εv = vε1 −∆εv(v − 1), ε1 = hν(1− 2x),

∆ε = xhν, v ∈ [0, vd],
(1)

where v is the vibrational-energy level number, h is Planck’s constant, ν is the atom-vibration frequency in the
molecule, x is the anharmonicity constant (x� 1), and vd is the vibrational level corresponding to the dissociation
energy.

The probability of vibrational transitions for anharmonic oscillators

(v) + (v1) ←→ (v′) + (v′1) (2)

depends on the ratio of the vibrational-energy resonance defect to the energy value before collision, i.e., on the
quantity

α = |εv′ + εv′
1
− εv − εv1 |/(εv + εv1).

The results of some studies given in [2, 5] lead to the conclusion that the probability of vibrational transitions (2)
increases by more than an order of magnitude as the value of α decreases by a factor of two. In this case, the
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vibrational relaxation process can be divided into several stages [6, 7] corresponding to the situations where the
formation of local quasistationary distributions involves, in addition to the translational–rotational transitions of
molecules, transitions (2) in which the relative resonance defect α changes in definite ranges. In particular, it is
possible to distinguish relaxation stages with α ≈ 1, α 6 1/2, α 6 1/4, and α 6 1/8. Along with locally equilibrium
flows, for which α ≈ 1, nonequilibrium quasi-stationary flows with α 6 1/2 are widely occurring.

It has been shown [6, 7] that under the conditions considered, the gas flow can be considered to be in
equilibrium over translational and rotational energy levels and the distribution of molecules over vibrational levels
can be written as

nv =
n

Z̃vibr(T, T1)
exp

{
−
ψ1/2(v)ε1
kT1

+
ψ1/2(v)ε1 − εv

kT

}
. (3)

Here nv is the population of the vth vibrational level, n is the total number of molecules in unit volume, k is the
Boltzmann constant, ε1 and εv are the energies of the 1-st and vth vibrational levels, and T is the gas temperature
that corresponds to the distribution of molecules over the translational and rotational energies, T1 is the temperature
called by Treanor [8] the temperature of the 1-st vibrational level;

Z̃vibr(T, T1) =
vd∑

v=0

exp
{
−
ψ1/2(v)ε1
kT1

+
ψ1/2(v)ε1 − εv

kT

}
is the vibrational statistical sum under the nonequilibrium conditions considered and ψ1/2(v) is an additional
additive invariant of the vibrational transitions (2) for α 6 1/2; the dependence of the invariant ψ1/2 on the
vibrational-level number v corresponds to the quasiharmonic approximation of the vibrational energy (1) according
to the model proposed in [6, 7].

The relative populations of the vibrational levels x(v) = nv/n0 corresponding to the nonequilibrium distri-
bution (3) can be written as [6, 7]

x(v) = exp
{
− ε1
kT1

(εv

ε1
−

(
ψ1/2(v)−

εv

ε1

)(T1

T
− 1

))}
. (4)

At the low levels with v ∈ [0, v1], they are close to or slightly exceed the Boltzmann populations at temperature T1.
At these levels, the invariant ψ1/2(v) = v and the distribution (3) coincides with the Treanor distribution [8]. At
the middle levels with v ∈ [v1, v∗], the additional invariant ψ1/2(v) is a piecewise-continuous linear function which
exceeds the vibrational energy. On this segment of the vibrational spectrum, the excess of the populations (4) over
the Boltzmann populations at temperature T1 is greater the larger the ratio T1/T . For T1/T ≈ 10, the curve of the
relative populations x(v) has a distinct plateau (see [2–5]). The vibrational energy (1) reaches the maximum value
when v = vmax. In this case, at the upper levels close to vmax, the vibrational energy hardly changes. Accordingly,
the quasiharmonic approximation ψ1/2(v) [6, 7] can be considered constant beginning with a certain level v∗ that
satisfies the equation

ψ1/2(vmax)− ψ1/2(v∗) ≈ ψ1/2(v∗)/2.

Under these conditions, at the upper levels with v ∈ [v∗, vd], the invariant ψ1/2(v) = ψ1/2(v∗) and the relative
populations (4) decrease according to the Boltzmann distribution at a gas temperature T .

In the perfect fluid approximation, the system of gas-dynamic equations for such flows can be written as [6, 7]

ρ
dV

dt
= Fn−∇p, dn

dt
+ n div V = 0,

de

dt
= −(p+ e) div V ,

d〈ψ1/2〉
dt

= 〈∆ψ1/2〉.
(5)

Here F is the external force that acts on the gas molecules, ρ is the mass density of the gas, p is the pressure, n and
e are the densities of the particle number and the total energy, V is the mass velocity of the gas, 〈ψ1/2〉 is the
average value of the approximate additional collision invariant ψ1/2(v), which was mentioned above, and 〈∆ψ1/2〉 is
the change in the average value of this invariant due to the vibrational transitions for α > 1/2.

Incidence of supersonic gas flows on an obstacle results in formation of shock waves in the gas. In classical gas
dynamics, a shock wave is modeled by a thin (compared to the characteristic flow dimension) transient layer between
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two states of thermodynamic equilibrium (see, for example, [9]). Under nonequilibrium conditions, a shock wave
can be treated by analogy as a transient layer between two nonequilibrium quasi-stationary states, and generalized
conditions of dynamic consistency can be derived [10].

The present paper deals with shock waves in vibrationally nonequilibrium gas. Shock waves are considered
for the case where the nonequilibrium vibrational distribution (3) forms in the incident flow and the macroscopic
equations (5) hold. If we confine the consideration to direct shock waves, the dynamic consistency conditions can
be written in symmetric form [11]:

n(+)V (+) = n(−)V (−), ρ(+)V (+)2 + p(+) = ρ(−)V (−)2 + p(−),

V (+)2

2
+

( e
ρ

)(+)

+
(p
ρ

)(+)

=
V (−)2

2
+

( e
ρ

)(−)

+
(p
ρ

)(−)

, 〈ψ1/2〉(+) = 〈ψ1/2〉(−),

(6)

where β(−) and β(+) are the values of the parameter β ahead of and behind the shock wave. Along with the gas
molecule number density n and the velocity V , relations (6) contain quantities that can be treated as functions
of the parameters n, T and T1. The pressure p and the density ρ satisfy the formulas p = nkT and ρ = nm.
Using the Maxwell–Boltzmann distribution over the translational and rotational energies and the nonequilibrium
quasistationary distribution (3) over the vibrational levels, we obtain the following analytic dependence of the
average value of the invariant 〈ψ1/2〉 and the energy density e on two temperatures — T and T1:

〈ψ1/2〉 =
1
n

vd∑
v=0

nvψ1/2(v) =

vd∑
v=0

exp
{
−
ψ1/2(v)ε1
kT1

+
ψ1/2(v)ε1 − εv

kT

}
ψ1/2(v)

vd∑
v=0

exp
{
−
ψ1/2(v)ε1
kT1

+
ψ1/2(v)ε1 − εv

kT

} ; (7)

e = (5/2)nkT + n〈εvibr〉. (8)

Here the translational and rotational energies are calculated in the classical approximation and

〈εvibr〉 =
1
n

vd∑
v=0

nvεv =

vd∑
v=0

exp
{
−
ψ1/2(v)ε1
kT1

+
ψ1/2(v)ε1 − εv

kT

}
εv

vd∑
v=0

exp
{
−
ψ1/2(v)ε1
kT1

+
ψ1/2(v)ε1 − εv

kT

} . (9)

Substituting the expressions for the density and pressure and formulas (7)–(9) into the consistency conditions (6),
we have

n(+)V (+) = n(−)V (−), mn(+)V (+)2 + n(+)kT (+) = mn(−)V (−)2 + n(−)kT (−),

V (+)2

2
+

7
2
kT (+)

m
+
〈εvibr〉(+)

m
=
V (−)2

2
+

7
2
kT (−)

m
+
〈εvibr〉(−)

m
, 〈ψ1/2〉(+) = 〈ψ1/2〉(−).

(10)

If the incident-flow parameters are known, relations (10) can be treated as a system of algebraic equations for the
unknown parameters n(+), V (+), T (+) and T

(+)
1 . The corresponding system of equations can be solved using the

Newton method. The solution of the equations yields the values of the gas-dynamic parameters and the relative
vibrational populations (4) behind the shock wave.

Relaxation processes behind a shock-wave front in a vibrationally nonequilibrium gas has been analyzed
previously using differential equations for the vibrational populations nv, v ∈ [0, vd] (see, for example, [12]). The
research method proposed in the present study uses generalized dynamic-consistency conditions does not allow one
to determine the vibrational populations behind a shock wave at various distances from its front. It only enables one
to find all parameters of interest directly behind a shock wave (on the boundary of the relaxation zone considered).
An advantage of this method is that the number of equations is decreased by more than an order of magnitude and
the need to know the probabilities of different vibrational transitions (2) is eliminated.

The possibility of determining the state of gas behind shock-wave fronts on the boundaries of the zones of
partial vibrational relaxation by solving algebraic systems of the form (10) was demonstrated in [11]. In the cited
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study, direct shock waves in an equilibrium flow were considered. In the present study, it is proposed to explore the
states of a vibrationally nonequilibrium gas behind shock waves by solving system (10).

Using the generalized consistency relations (10), we investigated shock waves in molecular oxygen, nitro-
gen, and carbon dioxide. The incident-flow parameters n(−), V (−), T (−), and T

(−)
1 were varied in the follow-

ing ranges: n(−) = 0.5nL–5nL (nL is Loschmidt’s number), V (−) = 500–3500 m/sec, T (−) = 500–1000 K, and
T

(−)
1 = 1000–5000 K.

The calculation results show that under nonequilibrium conditions, the gas-temperature jump coincides with
an accuracy of a few degrees with that under conditions of an equilibrium incident flow. Nonequilibrium effects
also have a weak effect on the magnitudes of density and velocity jumps, and the jump in the temperature of the
first vibrational level T1 can be ignored. Under these conditions, the ratio T1/T decreases with passage through the
shock wave. Accordingly, the plateau level on the curve x(v) is lowered, and on the vibrational-spectrum segment
[0, v∗], the relative vibrational populations x(+)(v) become closer to the Boltzmann population at temperature T (−)

1

than the populations x(−)(v). Similar effects were observed behind a direct shock wave in molecular nitrogen at a
certain distance from the shock front in [12].

Figure 1 shows the quantities y = lnx(v)/(ε1/(kT
(−)
1 )), where x(v) are the relative vibrational popula-

tions (4) of nitrogen molecules ahead of and behind the shock formed in a nonequilibrium flow at a velocity
V (−) = 1000 m/sec, a molecule number density n(−) = nL, a gas temperature T (−) = 500 K, and a temperature
of the first vibrational level T (−)

1 = 5000 K. The curve 1 refers to the populations x(−)(v) ahead of the shock;
curve 2 refers to the populations x(+)(v) behind the shock with the parameters found from Eqs. (10). Curve 3,
corresponding to the populations x(+)(v) at a distance of 1100 free path lengths from the shock front [12], is given
for comparison.

As is evident from the figure, in the interval 0 6 v 6 v∗ (v∗ is the vibrational level beginning with which the
Boltzmann distribution at a temperature T holds), curves 2 and 3, describing the populations behind the shock,
are below curve 1, which describes the populations ahead of the shock. The plateau segment on these curves is less
pronounced.

As is known, the jump in the gas temperature T increases with increase in the incident-flow velocity V (−)

(Mach number). If the jump in the temperature T1 is ignored, then at the same ratio T (−)
1 /T (−), the ratios T (+)

1 /T (+)

behind the shock wave for different values of the velocity V (−) are different. As the velocity V (−) increases, the
ratio T

(+)
1 /T (+) decreases. Accordingly, the relative populations x(+)(v) decrease in the interval [0, v∗], and the

curves approach Boltzmann curves at a temperature T (−)
1 .

This is clearly demonstrated in Fig. 2, which also gives the quantities y = lnx(v)/(ε1/(kT
(−)
1 )) for the case

where the nonequilibrium quasistationary distribution (3) with n(−) = nL, T (−) = 500 K, and T
(−)
1 = 4000 K

formed in an incident flow of molecular nitrogen, and the flow velocity V (−) was varied. The relative populations
x(+)(v) behind the jump are shown by curves 1–3: V (−) = 2000 (1), 1500 (2), and 1000 m/sec (3); curve 4 refers to
the population x(−)(v) ahead of the shock.
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A similar effect, called a decrease in the anharmonicity effect, was also observed in studies [12] of the
vibrational relaxation of molecular nitrogen behind a direct shock.

Calculations of the populations of the vibrational levels of nitrogen, oxygen, and carbon dioxide molecules
behind shocks in various nonequilibrium flows using the generalized consistency relations (10) show that an increase
in the velocity V (−) at a constant ratio T (−)

1 /T (−) has a similar effect on the populations x(+)(v) as a decrease in
T

(−)
1 /T (−) at a constant velocity V (−).

The results suggest that when flows of diatomic gases pass through a shock wave, the degree of their
nonequilibrium due to the difference between the temperatures T and T1 decreases.

The decrease in the temperature ratio T1/T with passage through a shock wave will be larger the higher the
incident-flow velocity V (−).
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